

CLIA Complexity: WAIVED

For in vitro diagnostic use.

A CLIA Certificate of Waiver is required to perform the test in a waived setting. To obtain a Certificate of Waiver, please contact your state health department. Additional CLIA waiver information is available at the Centers for Medicare and Medicaid website at www.cms.hhs.gov/CLIA or from your state health department.

Read the Package Insert and quality control procedures completely before using the product. Carefully follow the instructions when performing the test. Failure to follow the instructions or modification to the test system instructions will result in the test no longer meeting the requirements for waived classification.

NOTE: Do not discard this Package Insert. There is only one (1) Package Insert per dispenser box. Additional copies of the Package Insert can be found at quidel.com.

QuickVue Adenoviral conjunctivitis Test is a rapid immunoassay for the visual, qualitative *in vitro* detection of Adenoviral antigens (hexon protein) directly from human eye fluid. The test is intended for professional use as an aid in the rapid differential diagnosis of acute conjunctivitis.

Negative results do not preclude Adenovirus infection, nor are they intended to rule out other microbial-caused infections of the conjunctiva, and should not be used as the sole basis for treatment or other management decisions.

Store between 39°F to 77°F (4°C to 25°C). Not to be taken internally. Keep out of reach of children. Rx Only

SUMMARY AND EXPLANATION

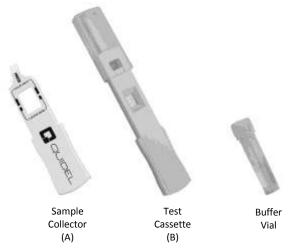
Morphologically, Adenoviruses are nonenveloped DNA viruses with an icosahedral structure about 80 nm in diameter. Adenovirus has been implicated in diseases affecting the respiratory, ocular and gastrointestinal systems. ²⁻⁴

Adenovirus is a frequent cause of infectious conjunctivitis. Human Adenoviruses are classified into 6 subgenera and 53 serotypes. Approximately one third of the human Adenovirus serotypes have been associated with common forms of Adenovirus related eye infections but the most common causes of acute conjunctivitis are related to serotypes 3, 4, 8, 11, 19 and 37. The serotypes have the following associations: serotypes 8, 19 and 37 are most responsible for epidemic keratoconjunctivitis; 10-13 serotypes 3, 4, 5 and 7 tend to cause pharyngeal-conjunctival fever, which usually affects children; 10 serotypes 1–11 and 19 are the primary cause of nonspecific follicular conjunctivitis. However, the other serotypes can also produce clinically indistinguishable episodes of acute follicular conjunctivitis. 1,11,14

Cell culture in combination with immunofluorescence is the historical "gold standard" for identifying Adenovirus in conjunctival specimens. ¹⁵ Virus isolation requires an intensive process, technical expertise and

may take up to 3 weeks to complete. The polymerase chain reaction (PCR) is increasingly used in place of cell culture to detect Adenovirus. ^{1,16} In addition, the differential diagnosis of various forms of conjunctivitis (viral, bacterial, allergic) is often difficult because they manifest similar symptoms.

PRINCIPLE OF THE PROCEDURE


QuickVue Adenoviral conjunctivitis Test utilizes Direct Sampling Micro-Filtration technology. Adenoviral antigen, the conserved Adenovirus hexon protein, when present in the patient sample is captured between two antigen specific monoclonal antibodies. One antibody is immobilized in the detection zone of the device. The second antibody is labeled with colloidal gold. The detector is a disposable, rapid test requiring 10 minutes for a result.

REAGENTS AND MATERIALS SUPPLIED

10-Test Kit:

- Individually Packaged Sample Collector (10)
- Individually Packaged Test Cassettes (10)
- Buffer Vial (10): contains a buffered salt solution with 0.1% Sodium Azide, as a preservative
- Package Insert (1)
- Quick Reference Instructions (1) (U.S. only)

The Sample Collector (A) is a separately packaged sterile component that can easily be assembled onto the Test Cassette (B). Additionally, the Test Cassette (B) guarantees correct sample transfer onto the lateral flow assay strip.

MATERIALS NOT SUPPLIED IN KIT

- Timer
- Gloves
- Quality control materials (see section on external controls)

WARNINGS AND PRECAUTIONS

- For *in vitro* diagnostic use only. For prescription use.
- Keep the Test Cassette and Sample Collector in their foil pouches until just before use.
- The Dacron® material used in the sampling fleece may cause allergic reactions for some people.
- Do not use QuickVue Adenoviral conjunctivitis Test past the expiration date.
- Follow Universal Precautions when handling patient samples.
- Wear suitable protective clothing, gloves, and eye/face protection when handling the contents of this kit.
- Wash hands thoroughly after handling.

- Both QuickVue Adenoviral conjunctivitis Test and the Buffer Vial are single-use items. Do not reuse with multiple specimens.
- QuickVue Adenoviral conjunctivitis Test requires a visual readout. Do not interpret the test result if you have color-impaired vision.
- Result interpretation requires a brightly lit environment.
- The QuickVue Adenoviral conjunctivitis Test Sample Collector, Test Cassette and Buffer can only be used once.
- Dispose of containers and unused contents in accordance with Federal, State and Local regulatory requirements.
- For additional information on hazard symbols, safety, handling and disposal of the components within this kit, please refer to the Safety Data Sheet (SDS) located at quidel.com.

KIT STORAGE AND STABILITY

Store QuickVue Adenoviral conjunctivitis between 39°F to 77°F (4°C to 25°C). Both QuickVue Adenoviral conjunctivitis Test and the Buffer are stable until the expiration dates marked on their outer packaging and containers.

QUALITY CONTROL

QuickVue Adenoviral conjunctivitis Test has built-in procedural controls (see below). For daily quality control, Quidel recommends documenting that these internal procedural controls were checked for the first sample tested each day.

Procedural Controls

An unused QuickVue Adenoviral conjunctivitis Test device has a purple flow indicator on the test strip in the sample transfer window (G).

The unused device also has two (2) faint orange lines in the result window (H).

If the test runs and the reagents work, the blue line will appear in the control zone. This is indicative of the functionality of the test.

The appearance of the control line indicates the correct application and performance of the test. The control line must appear in all valid tests. If the control line does not appear, the test must be interpreted as invalid and has to be repeated by resampling the eye using a new QuickVue Adenoviral conjunctivitis Test.

A purple fluid wave is observed moving across the result window (H) while the test is running. Once the background within the result window (H) is white and 10 minutes have elapsed, the test may be accurately read. If there is a streaky fluid wave in the background after 10 minutes, allow an additional 5-10 minutes of running time prior to interpretation. The clearing of the background color from the result window (H) is a negative background control.

External Controls

Positive and negative external controls are available directly from Quidel. The positive control contains recombinant Adenovirus hexon protein at a concentration near the detection limit of QuickVue Adenoviral conjunctivitis Test as well as additional proteins to simulate biological matrix. The negative control consists of buffered solution containing detergent and proteins to simulate biological matrix.

QuickVue Adenoviral conjunctivitis Test external controls require the sample collector's sampling fleece to be dipped into the control vial. Once the control specimen is collected, the test is assembled, activated, and read in an identical manner as the clinical setting.

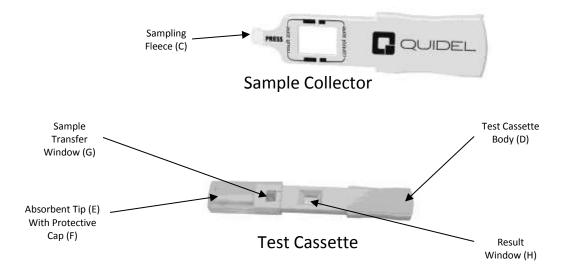
It is recommended that both a positive and negative external control be tested:

- once with each new lot number of QuickVue Adenoviral conjunctivitis Test
- once with each new shipment received
- once by each new untrained operator before he/she tests patient samples

Additional controls may be tested according to the requirements of local, state and federal regulations or accrediting organizations. For guidance on proper QC testing refer to CLSI document EP12-A2 and 42 CFR493.1205.

Please refer to the external controls Package Insert for instructions on how to run the external controls. External controls will have an individual expiration date printed on each package. DO NOT use past the expiration date.

When the correct control results are not obtained, repeat the test control or contact Quidel Technical Support at 800.874.1517 (in the U.S.) or 858.552.1100 (outside the U.S.).


Additional External Controls may be obtained separately by contacting Quidel's Customer Support Services at 800.874.1517 (in the U.S.) or 858.552.1100 (outside the U.S.).

TEST PROCEDURE

Expiration date: Check expiration on all packaging. Make sure there is no damage to the foil pouches. Do not use if foil pouches are damaged. *Do not use any test past the expiration date on the label.*

Preparing the Test

Tear open each foil pouch at the indicated perforation and remove the contents. Remove the protective cap (F) from the Test Cassette body (D). Do not touch the sterile sampling fleece (C) prior to collecting the patient sample.

Taking a Sample

- 1. Locate the sampling fleece (C) on the underside of the sample collector.
- 2. If ocular anesthetic or any other topical medication has been applied to the eye, wait at least **5 minutes** prior to collecting a sample. Gently lower the patient's eyelid to expose the inside of the lower lid (palpebral conjunctiva).

3. Gently dab and drag the sampling fleece (C) in multiple locations along the palpebral conjunctiva 6-8 times and then allowed to rest against the conjunctiva for an additional 5 seconds. This will moisten the sampling fleece.

Upon saturation with tear fluid, the fleece will **glisten.** Based on tear volume and composition, the fleece may appear white or patchy pink in color. If the fleece is not saturated and glistening, gently dab and drag the sampling fleece (C) along the palpebral conjunctiva an additional 4-6 times.

Assembling the Test

- 1. Locate the Test Cassette with the Test Cassette body (D) and the protective cap (F).
- 2. Assemble the test by gently placing the sampling fleece (C) of the sample collector into the sample transfer window (G) of the Test Cassette body (D).
- 3. Press firmly where indicated until the test feels secure. A double-click means the test is properly assembled.

Running the Test

NOTE: The sample should be collected, the test assembled, and Buffer applied within **1 hour** of opening the Test Cassette.

- 1. Remove the protective cap (F) from the Test Cassette. Open the Buffer Vial. Do not allow any portion of the test besides the absorbent tip (E) to touch the Buffer Vial.
- 2. Immerse the absorbent tip (E) into the Buffer Vial for a minimum of 20 seconds.

3. Remove the absorbent tip (E) from the Buffer Vial, replace the protective cap (F), and lay the test flat on a horizontal surface for **10 minutes.**

INTERPRETATION OF RESULTS

NOTE: Do not interpret the test results before completing at least 10 minutes of development time. A purple fluid wave may be observed moving across the result window (H) while the test is running.

The cut-off of the QuickVue Adenoviral conjunctivitis assay was determined by serial dilutions of the Adenovirus hexon protein and found to be 6 ng/mL or 60 pg per test and this is estimated to be equivalent to 40-50 Adenoviruses.

Once the background within the result window (H) is white and 10 minutes have elapsed, the test may be accurately read. If there is a streaky fluid wave in the background, or if the test is negative after 10 minutes, allow an additional 5-10 minutes of running time prior to interpretation. The test should be read within 12 hours of test completion. After this period of time, it is possible that the results may change. Accurate visual interpretation requires examination under brightly lit conditions.

The results of the test are indicated through two (2) lines, which appear in the result window (H): the control line and the result line. The control line appears as a **BLUE** line in the control zone. The control line indicates the correct application and performance of the test and must appear for the test to be valid.

Positive Result

The presence of both a **BLUE** line in the control zone and a **RED** line in the result zone indicates a positive result. An uneven or incomplete **RED** line is due to an uneven distribution of tear fluid on the sampling fleece (C). Even if the **RED** line is faint in color, incomplete over the width of the test strip, or uneven in color, it must be interpreted as positive. A positive result indicates the presence of Adenovirus antigens in the tear fluid.

Positive

Negative Result

Only a **BLUE** line in the control zone. A negative result is indicative of an absence of Adenovirus antigens present in the tear fluid.

Invalid Result

If a **BLUE** line does not appear, the test is invalid. Re-immerse the absorbent tip (E) into the Buffer Vial for an additional 10 seconds. If a **BLUE** line still does not appear after 10 minutes, the test must be discarded and the patient retested by resampling* the eye using a new test kit (new Sample Collector, Buffer Vial and Test Cassette). DO NOT report an invalid test result to your patient. Although the test requires only $10~\mu L$ of fluid, if a second sampling is needed, repeat swabs may reveal reduced eye fluid available for collecting an adequate sample. Each additional sampling may reduce the Adenoviral antigen load transferred to the test. The test should always be performed on the eye that is more severely affected.

*If both eyes are equally affected, it is recommended that the second sample be taken from the other eye. If only one eye is affected, the sample may be repeated **30 minutes** later.

LIMITATIONS

- The test is best used within 7 days of developing a red eye consistent with infectious conjunctivitis. Always test the most affected eye.
- QuickVue Adenoviral conjunctivitis assay tests for both infectious and noninfectious Adenoviral antigens. Test performance depends on the antigen load in the specimen zone and may not correlate with a cell culture performed on the same specimen.
- Inadequate specimen collection or low levels of virus shedding may result in suboptimal performance and may yield false negative results.
- Results obtained with this assay, particularly in the case of weak test lines that are difficult to interpret, should be used in conjunction with other clinical information available to the physician.
- The performance of this test has not been evaluated for sample types other than human eye fluid specimens.
- The positive and negative predictive values are dependent on the prevalence of the disease in a given population.

EXPECTED VALUES

The prevalence of Adenovirus varies during the year and from region to region, with outbreaks typically occurring during spring and early summer. The true incidence of Adenoviral conjunctivitis is dependent on many factors including the method of specimen collection and the test method used. In previous studies, the prevalence of Adenovirus infections varied between 20% and 75% of all cases of infectious conjunctivitis. In the QuickVue Adenoviral conjunctivitis Test clinical study, the Adenoviral incidence was found to be 24%.

PERFORMANCE CHARACTERISTICS

A prospective, multicenter, masked, sequential, clinical trial was performed at a combination of private ophthalmology practices and academic centers. The study enrolled 128 patients presenting with a clinical diagnosis of acute viral conjunctivitis. Thirty-one (31) patients were confirmed positive for Adenovirus by viral cell culture. The QuickVue Adenoviral conjunctivitis Test clinical performance data is summarized in the following table:

N=128		Cell Culture	
		+	-
QuickVue Adenoviral conjunctivitis Test	+	28	4
	-	3	93
Sensitivity		90% (28/31)	
		95% CI (75.1-96.7)	
Specificity		96% (93/97)	
		95% CI (89.9-98.4)	
Negative Predictive		97% (93/96)	
Value		95% CI (91.2-98.9)	
Positive Predictive		88% (28/32)	
Value		95% CI (71.9-95.0)	

LIMITS OF DETECTION

All human Adenovirus serotypes contain the hexon protein that is detected by QuickVue Adenoviral conjunctivitis Test. The antibodies target a conserved region of the hexon protein universal to all Adenovirus serotypes. ¹⁷⁻¹⁸ In the laboratory, serotypes 1, 3, 4, 5, 7, 8, 11, 14, 19, 31, 37 were tested and demonstrated a positive antigen-antibody reaction. The QuickVue Adenoviral conjunctivitis assay detection limit was measured by serial dilutions of the Adenovirus hexon protein and found to be 6 ng/mL or 60 pg per test and this is estimated to be equivalent to 40-50 Adenoviruses

CROSS-REACTIVITY

Various infectious ocular pathogens, generated in cell culture, and important for conjunctivitis were applied in the laboratory to determine potential cross-reactivities with QuickVue Adenoviral conjunctivitis Test.

- Echovirus Type 6 Culture Fluid
- Parainfluenza Type 2
- Parainfluenza Type 3
- Haemophilus influenzae
- Pseudomonas aeruginosa
- Streptococcus pneumoniae
- Staphylococcus aureus
- Parainfluenza Type 1
- Moraxella catarrhalis
- Echovirus Type 11

- Rhinovirus Type 1A
- Herpes Simplex Virus 2 Strain G
- Herpes Simplex Virus 1 Strain F
- Herpes Simplex Virus 1 Strain HF
- Coxsackievirus B1
- Echovirus Type 7
- Staphylococcus epidermis (3 strains)
- Chlamydia trachomatis, Serovar H
- Chlamydia trachomatis, Serovar I

All isolates were cultured from human specimens. The concentrations of the suspensions were between 500,000 and 1,500,000 microorganisms (virus, bacteria) per mL. No positive test lines developed, and no cross-reactivities to these microorganisms occurred when 10 μ L of the culture suspension was tested.

INTERFERING SUBSTANCES

The following eye medications were tested for interference with QuickVue Adenoviral conjunctivitis Test. To check for specificity, 10% of each medication was applied to the sampling fleece. Sensitivity was checked with 1:1 mixtures of purified Adenoviral hexon protein in human tears at twice the cutoff level and 20% of the respective medication. Neither false positives nor false negatives at the cutoff level were found for the following substances:

- Alcon *Alcaine*
- Alcon Azopt
- Alcon Econopred
- Alcon Nevanac
- Alcon Pataday
- Alcon *Systane*
- Alcon *Tobradex*
- Alcon Travatan
- Alcon Vigamox
- Allergan Acular LS
- Allergan *Alphagan*
- Allergan Combigan
- Allergan Elastat
- Allergan FML
- Allergan Lumigan
- Allergan Optive
- Allergan *Pred Forte*
- Allergan Refresh Liquigel

- Allergan Refresh Tears
- Allergan *Zymar*
- AMO Blink Tears
- AVS Thera Tears
- Bausch + Lomb *Alrex*
- Bausch + Lomb Lotemax
- Bausch + Lomb Zylet
- Falcon Gentamicin Sulfate
- Falcon Polymyxin B Sulfate
- Falcon *Timolol*
- Inspire AzaSite
- Ista Xibrom
- MedPointe Optivar
- Merck Trusopt
- Novartis GenTeal
- Novartis Voltaren
- Novartis Zaditor
- Pfizer Visine
- Pfizer Xalatan
- Sigma-Aldrich Human IgA (1 mg/ml)
- Sigma-Aldrich Human Lactoferrin (1 mg/ml)
- SigmaAldrich Transferrin (1 mg/ml)
- Triad Disposables Povidone
- Vistakon Betimol
- Vistakon *Iquix*
- Vistakon Quixin
- Wilson *Proparacaine*

PRECISION AND REPRODUCIBILITY STUDIES

Precision

Samples were prepared in stabilizing buffer with purified Adenovirus hexon protein. Eight samples containing weak positive, weak negative, positive and negative controls were tested. At one site, 160 additional tests consisting of eight samples containing weak positive, weak negative, positive and negative controls were tested over 20 operating days. The inter-assay precision to detect positive and negative samples was 100% although the strength of the signal varied for the weak positive samples.

Reproducibility

Samples were prepared in stabilizing buffer with purified Adenovirus hexon protein. Eight samples containing weak positive, weak negative, positive and negative controls were tested. A total of 162 tests were performed at 3 sites over 3 consecutive days. The inter-assay precision to detect positive and negative samples was 100% although the strength of the signal varied for the weak positive samples.

Batch to batch reproducibility was tested with three different QuickVue Adenoviral conjunctivitis Test batches. There was no variability among the three batches as assessed by testing in triplicates with seven different concentrations of hexon ranging from 0 to 48 ng/mL.

CLIA WAIVER PERFORMANCE

The following studies were conducted to evaluate the accuracy of QuickVue Adenoviral conjunctivitis Test when used by operators in CLIA-waived settings.

The prospective clinical study described in the Performance Section above was conducted with 26 intended users at 8 CLIA-waived (intended use) sites. The study enrolled 128 patients presenting with a clinical diagnosis of acute viral conjunctivitis. The following agreement was observed between QuickVue Adenoviral conjunctivitis Test and viral cell culture.

Sensitivity: 90% (28/31) 95% CI [75-98] **Specificity:** 96% (93/97) 95% CI [90-98]

PCR was found to be negative for 1 of the 3 sensitivity discordants and positive for 2 of the 4 specificity discordant samples.

There were no invalid results.

An additional prospective study was conducted at 3 CLIA-waived ophthalmology/optometry clinical sites on patients with ocular ailments. Seventy patients were tested with QuickVue Adenoviral conjunctivitis Test by 9 untrained operators at 3 clinical sites. The table below depicts the agreement of the QuickVue Adenoviral conjunctivitis Test results in the hands of untrained operators, when compared to cell culture results.

N=70		Cell Culture	
		+	-
QuickVue Adenoviral conjunctivitis Test	+	1	5
	_	0	64
Sensitivity		100% (1/1) 95% CI (20.7-100)	
Specificity		93% (64/69) 95% CI (84.1-96.9)	

There was one invalid result: 1.4% (1/71) 95% CI [0.3-7.6]

To further evaluate the performance of QuickVue Adenoviral conjunctivitis Test in the hands of the intended users, contrived samples prepared in human tear matrix, at concentrations ranging from 1 to 5 times the LOD reflecting the dynamic range of the assay. A total of 189 masked and randomized samples, consisting of 108 positive and 81 negative samples were tested at 3 clinical sites by 3 untrained operators at each site, over a period of 10 operating days. The positive contrived samples consisted of inactivated Adenovirus in human tears and the negative samples consisted of QuickVue Adenoviral conjunctivitis Test negative external controls.

The table below depicts the positive and negative agreement of QuickVue Adenoviral conjunctivitis Test with known positive and negative contrived samples, when tested by untrained operators at 3 clinical sites combined.

N=189		Cell Culture	
		+	_
QuickVue Adenoviral conjunctivitis Test	+	105	1
	_	3	80
Positive Percent		97% (105/108)	
Agreement		95% CI (92.2-99.1)	
Negative Percent		99% (80/81)	
Agreement		95% CI (93.3-99.8)	

There were no invalid results.

Study Near the Assay Cut-off: This study evaluated the performance of the QuickVue Adenoviral conjunctivitis Test with weakly reactive samples when used by untrained operators at 3 CLIA-waived sites. Twelve (12) untrained intended users were required to assemble, initiate and interpret test results from 120 unknown samples. The samples were contrived in tear matrix spiked with purified Adenovirus hexon protein and consisted of 60 weak positives (at the limit of detection {LOD} or assay cutoff) and 60 weak negatives (0.2x LOD). On a single day at each clinical site, the samples were blinded, randomized and tested. The agreement of the QuickVue Adenoviral conjunctivitis Test with the expected results when tested by untrained users is presented below.

Sample	Agreement With Expected Result
Weak Positive*	97% (58/60)
(at LOD)	(88.6-99.1)
Weak Negative*	100% (60/60)
(below LOD)	(93.9-100)

^{*}The expected results for "Weak Positive" samples are "Positive," while the expected results for "Weak Negative" samples are "Negative."

There were no invalid results.

Flex studies: Using risk analysis as a guide, analytical flex studies were conducted. The studies demonstrated that the test is insensitive to stresses of environmental conditions and potential user errors.

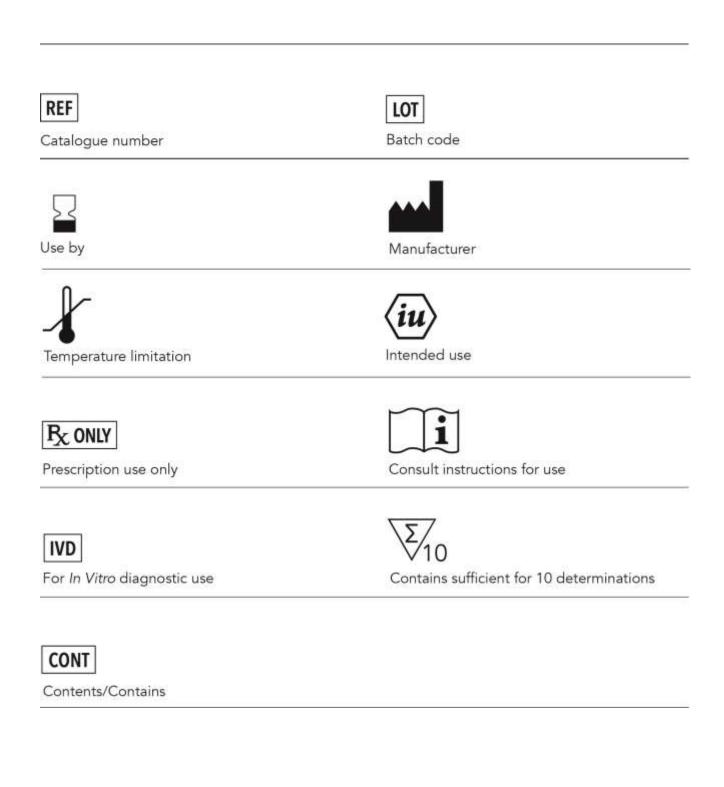
ASSISTANCE

If you have any questions regarding the use of this product, please call Quidel's Technical Support Number 800.874.1517 (n the U.S.) or 858.552.1100 (outside the U.S.), Monday through Friday, from 7:00 a.m. to 5:00 p.m., Pacific Time. If outside the United States contact your local distributor or technicalsupport@quidel.com.

REFERENCES

- 1. Saitoh-Inagawa W, Oshima A, Aoki K, et al. Rapid diagnosis of adenoviral conjunctivitis by PCR restriction fragment length polymorphism analysis. J of Clin Micro. 1996;34:2113-2116.
- **2.** Hierholzer J.C. Adenovirus, ed. by P. Murray et al. Manual of Clinical Microbiology, 6th edition, American Society for Microbiology, Washington DC1996;947-955.
- **3.** Schmitz HR, Wigand Heinrich W. Worldwide epidemiology in human adenovirus infection. J. Epidemiol. 1983;117:455-466.
- **4.** Uchio E, Matsushima H, Komura, et al. Clinical Evaluation of a simple one-step diagnostic test kit for the detection of Adenovirus in nasopharyngeal specimens, the 38th interscience conference on antimicrobial agents and chemotherapy (ICAAC), abstract, h66. 1998;334.
- 5. Baum J. Infections of the eye. Clin Infect Dis.1995;21:479-486.

- **6.** Pring-Åkerblom P, Adrian T. Type- and group-specific polymerase chain reaction for adenovirus detection. Res. Virol. 1994;145:25-35.
- **7.** Sambursky R, Tauber S, Schirra F, et al. The RPS Adeno Detector for diagnosing adenoviral conjunctivitis. Ophthalmology. 2006;113:1758-64.
- **8.** Kinchington PR, Turse SE, Kowalski RP, et al. Use of polymerase chain amplification reaction for the detection of adenoviruses in ocular swab specimens. Invest Ophthalmol Vis Sci. 1994;35:4126-4134.
- 9. Schnurr D, Dondero ME. Two new candidate adenovirus serotypes. Intervirol. 1993;36:79-83.
- **10.** Wood SR, Sharp IR, Caul EO, et al. Rapid detection and serotyping of adenovirus by direct immunofluorescence. J Med Virol. 1997;51:198-201.
- **11.** Takeuchi S, Itoh N, Uchio E, et al. Serotyping of adenoviruses on conjunctival scrapings by PCR and sequence analysis. J Clin Microbiol. 1999;37:1839-1845.
- **12.** Cooper RJ, Yeo AC, Bailey AS, et al. Adenovirus polymerase chain reaction assay for rapid diagnosis of conjunctivitis. Invest Ophthalmol Vis Sci. 1999;40:90-95.
- **13.** Infectious Agents Surveillance Center of Japan. Viruses isolated from the eye, Japan, 1990-1994. Infectious Agents Surveillance Report 1995;16:97-98.
- **14.** Roba LA, Kowalski RP, Gordon AT, et al. Adenoviral ocular isolates demonstrate serotype-dependent differences in *in vitro* infectivity titers and clinical course. Cornea. 1995;14:388-393.
- **15.** Gordon JS. Adenoviral and other nonherpetic viral diseases. In: Smolin G, Thoft RA, eds. The Cornea 3rd ed. Boston: Little, Brown & Co, 1994: 215-227.
- **16.** Miura-Ochiai R, Shimada Y, Konno T, et al. Quantitative detection and rapid identification of human adenoviruses. J Clin Microbiol. 2007;45:958-67.
- **17.** Olive M, Eisenlohr L, Flomenberg N, et al. The adenovirus capsid protein hexon contains a highly conserved human CD4 T-cell epitope. Hum Gene Ther. 2002;10:1167-78.
- **18.** Leen AM, Sili U, Vanin EF, et al. Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8 T cells. Blood. 2004;104:2432-40.


REF 20324 – QuickVue Adenoviral conjunctivitis Test Kit – 10 tests

IVD

Quidel Corporation 10165 McKellar Court San Diego, CA 92121 USA **quidel.com**

1361400EN00 (10/18)

